Начертательная геометрия типовые задачи и методика решений

Начертательная геометрия
  • Ортогональное  (прямоугольное) проецирование
  • Комплексный чертеж
  • Комплексный чертеж прямой
  • Взаимное положение точек и прямых,
    их принадлежность плоскости
  • Принадлежность точки и прямой плоскости
  • Определение расстояния между двумя точками
  • Нахождение натуральной величины плоской фигуры
  • Построение точки пересечения прямой с плоскостью
  • Взаимное положение плоскостей
  • Метрические задачи
  • Перпендикулярность прямой и плоскости
  • Касательная плоскость и нормаль к поверхности
  • Определение расстояний
  • Определение расстояния
    между скрещивающимися прямыми
  • Угол между прямой и плоскостью
  • Угол между плоскостями
  • Кривая линия
  • Понятие поверхности.
  • Линейчатая поверхность
  •  Гранные поверхности и многогранники
  • Принадлежность точки и линии поверхности вращения
  • Пересечение поверхности и плоскости
  •   Пересечение поверхностей
  • Способ концентрических сфер
  • Пересечение поверхностей второго порядка
  • Развертки гранных поверхностей
  • Приближенные развертки
    развертывающихся поверхностей
  • Условные развертки неразвертывающихся
    поверхностей
  • Аксонометрические проекции
  • Ортогональная (прямоугольная) диметрическая проекция
  • МЕТОДЫ ПРОЕЦИРОВАНИЯ
  • Проецирование точки на две и три плоскости проекций
  • Задание прямой в пространстве
  • Длина отрезка прямой и углы наклона прямой
    к плоскостям проекции
  • Задание плоскости
  • Признаки принадлежности точки и прямой плоскости
  • ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
  • ПРЯМАЯ ЛИНИЯ,
    ПЕРПЕНДИКУЛЯРНАЯ К ПЛОСКОСТИ
  • Замена плоскостей проекций
  • Метод плоскопараллельного перемещения
  • Решение методом вращения вокруг проецирующей оси
  • Сечение многогранников плоскостью
  • Поверхность вращения общего вида
  • ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ
  • Плоскость, касательная к поверхности
  • Примеры задачь
  • Определить натуральную длину отрезка АВ
  • Построить проекции линии пересечения двух плоскостей
  • Построение эпюра параллельных плоскостей
  • Построить линию пересечения двух плоскостей
  • Построить горизонтальную проекцию плоской линии,
  • Построить на развертке цилиндра линию,
    принадлежащую поверхности цилиндра 
  •   Построить пересечение двух поверхностей вращения
  • КОМПАС-3D
  • ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ

    Для построения точки пересечения прямой с поверхностью через прямую следует провести вспомогательную плоскость и найти линию -пересечения этой плоскости с поверхностью. Точка пересечения (иди точка встречи заданной прямой и построенной линии или фигуры сечения) на поверхности и будет искомой точкой пересечения прямой с поверхностью.

    Сложность решения задачи зависит от трудоемкости нахождения линии пересечения, которая определяется следами поверхности и расположением прямой относительно как поверхности, так и плоскости проекций. 

    Чтобы получить рациональное решение, следует пользоваться
    наиболее простым способом определения линии пересечения. Этого
    можно достичь двумя путями:

    выбором положения вспомогательной секущей плоскости;

    переводом секущей прямой в частное положение.

    12.1 Вспомогательная секущая плоскость - проецирующая

    12.1.1 Задание: определить точки пересечения прямой т и пирамиды SABC (рис. 12.1).

    Решение: для решения задачи прямую т заключают во фронтально проецирующую плоскость  (). Фронтальная проекция фигуры сечения совпадает с фронтальной проекцией следа плоскости 2. Отмечают проекции точек (12, 22, 32) пересечения ребер пирамиды (SA, SB, SC), в которых фронтальный след плоскости  пересекает эти ребра. Зная положение фигуры сечения (12, 22, 32) на фронтальной проекции, определяют горизонтальную проекцию фигуры сечения (11,21, 31). Соединив горизонтальные проекции (11,21,31) точек (1, 2, 3) прямолинейными отрезками ((1121), (2131), (З111)), получают фигуру сечения — треугольник 123. Далее определяют точки пересечения горизонтальной проекции фигуры сечения (112131) с горизонтальной проекцией т1 прямой т — точки m1 и n1. Затем строят фронтальные проекции (М2 и N2) точек пересечения прямой т с поверхностью пирамиды SABC.

    12.1.2 Задание: определить точки пересечения прямой т с поверхностью прямого кругового цилиндра (рис. 12.2).

    Решение: при решении задачи достаточно отметить проекции точек пересечения М и N прямой т с поверхностью цилиндра на горизонтальной проекции - точки m1 и N1 Так как образующие прямого кругового цилиндра являются горизонтально проецирующими прямыми, фронтальные проекции точек пересечения прямой т с поверхностью цилиндра М2 и N2 находят с помощью линий проекционной связи, как это показано на рисунке.

    12.2 Вспомогательная секущая плоскость общего положения

    Вспомогательную секущую плоскость, проводимую через прямую при пересечении ею какой-либо поверхности, следует выбирать так, чтобы в результате получались простейшие сечения.

    Например, при пересечении конической поверхности прямой линией такой плоскостью является плоскость, проходящая через вершину и пересекающая эту поверхность по прямым линиям. При пересечении цилиндрической поверхности прямой линией вспомогательную плоскость целесообразно проводить через заданную прямую параллельно образующим цилиндра.

    12.2.1 Задание: определить точки пересечения прямой т с поверхностью прямого кругового конуса (рис. 12.3).

    Решение: прямую т заключают в плоскость Р, проходящую через вершину конической поверхности S. Плоскость Р задана пересекающимися прямыми т и n, проходящими через точку А, которая выбирается произвольно на заданной прямой т.

    Для определения горизонтального следа плоскости Р находят горизонтальные следы прямых т и п. Следы отмечают точками, например, 11 и 21, в которых горизонтальный след p1 плоскости Р пересекает основание конической поверхности. Проекции S111 и S222 - образующие поверхности конуса, по которым она пересекается плоскостью Р.

    Точки k1 и l1 - горизонтальные проекции искомых точек пересечения. Зная положение k1 и L1 определяют К2 и L2.

    12.3 Перевод секущей прямой в частное положение

    При пересечении поверхности сферы плоскостью в сечении получается окружность, которая проецируется на плоскости проекции в

    виде эллипсов или прямой и эллипса (если секущая плоскость - проецирующая). В случае, когда секущая плоскость параллельна плоскости проекции, окружность проецируется на эту плоскость проекции без искажения. Поэтому для упрощения решения задачи следует произвольно расположенную прямую перевести в положение, параллельное какой-либо плоскости проекции. Тогда прямую можно заключить в плоскость, параллельную плоскости проекции.

    12.3.1 Задание: определить точки встречи прямой т, заданной отрезком АВ, с поверхностью сферы (рис. 12.4).

    Решение: при решении этой задачи переводят прямую т в положение, параллельное плоскости проекции. Для этого вводят новую систему плоскостей П4/П1 в которой т||П4, и переходят от системы П2/П1 к системе П4П1. Новую ось проекций x1-4 проводят параллельно горизонтальной проекции прямой A1B1.

    Далее от концов горизонтальной проекции прямой, точек a1 и В1 проводят прямые, перпендикулярные к новой оси проекций, и на них на плоскости П4 откладывают координаты zA и ZB т.е. расстояния от оси проекций х до фронтальных проекций точек А2 и В2. Новая проекция А4В4 будет натуральной длиной прямой АВ. Аналогично находят и центр сферы О4.

    В новой системе горизонтально проецирующая плоскость Р () пересечет поверхность сферы по окружности радиусом R, которая спроецируется на плоскость hi в отрезок (12), а на плоскость П4 в окружность тем же радиусом R. Точки К4 и L4 -вспомогательные проекции точек пересечения, по которым определяют вначале k1 и L1 а затем К2 и L2.

    СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ