Начертательная геометрия типовые задачи и методика решений

Начертательная геометрия
  • Ортогональное  (прямоугольное) проецирование
  • Комплексный чертеж
  • Комплексный чертеж прямой
  • Взаимное положение точек и прямых,
    их принадлежность плоскости
  • Принадлежность точки и прямой плоскости
  • Определение расстояния между двумя точками
  • Нахождение натуральной величины плоской фигуры
  • Построение точки пересечения прямой с плоскостью
  • Взаимное положение плоскостей
  • Метрические задачи
  • Перпендикулярность прямой и плоскости
  • Касательная плоскость и нормаль к поверхности
  • Определение расстояний
  • Определение расстояния
    между скрещивающимися прямыми
  • Угол между прямой и плоскостью
  • Угол между плоскостями
  • Кривая линия
  • Понятие поверхности.
  • Линейчатая поверхность
  •  Гранные поверхности и многогранники
  • Принадлежность точки и линии поверхности вращения
  • Пересечение поверхности и плоскости
  •   Пересечение поверхностей
  • Способ концентрических сфер
  • Пересечение поверхностей второго порядка
  • Развертки гранных поверхностей
  • Приближенные развертки
    развертывающихся поверхностей
  • Условные развертки неразвертывающихся
    поверхностей
  • Аксонометрические проекции
  • Ортогональная (прямоугольная) диметрическая проекция
  • МЕТОДЫ ПРОЕЦИРОВАНИЯ
  • Проецирование точки на две и три плоскости проекций
  • Задание прямой в пространстве
  • Длина отрезка прямой и углы наклона прямой
    к плоскостям проекции
  • Задание плоскости
  • Признаки принадлежности точки и прямой плоскости
  • ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
  • ПРЯМАЯ ЛИНИЯ,
    ПЕРПЕНДИКУЛЯРНАЯ К ПЛОСКОСТИ
  • Замена плоскостей проекций
  • Метод плоскопараллельного перемещения
  • Решение методом вращения вокруг проецирующей оси
  • Сечение многогранников плоскостью
  • Поверхность вращения общего вида
  • ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ
  • Плоскость, касательная к поверхности
  • Примеры задачь
  • Определить натуральную длину отрезка АВ
  • Построить проекции линии пересечения двух плоскостей
  • Построение эпюра параллельных плоскостей
  • Построить линию пересечения двух плоскостей
  • Построить горизонтальную проекцию плоской линии,
  • Построить на развертке цилиндра линию,
    принадлежащую поверхности цилиндра 
  •   Построить пересечение двух поверхностей вращения
  • КОМПАС-3D
  • Метод плоскопараллельного перемещения

    Применение метода вращения вокруг проецирующей оси при преобразовании нередко приводит к наложению на исходную новых проекций. При этом чтение чертежа представляет определенные сложности. Избавиться от указанного недостатка позволяет метод плоскопараллельного перемещения проекций фигуры.

    Суть метода заключается в том, что все точки фигуры перемещаются в пространстве параллельно некоторой плоскости (например, параллельно какой-либо плоскости проекций). Это означает, что каждая точка фигуры перемещается в соответствующей плоскости уровня.

    Например, прямая общего положения АВ, заданная своими проекциями A1 B1 и А2В2 (рис. 9.5), перемещается таким образом, чтобы горизонтальная проекция АВ стала параллельной оси х.

    При этом точки А2 и В2 фронтальной проекции прямой АВ перемещаются в горизонтальных плоскостях уровня  и (на фронтальной проекции 2 и 2 параллельны оси х) и займут новое положение А2 и В2. При перемещении длина горизонтальной проекции A1B1 отрезка АВ остается постоянной, а величина фронтальной проекции А2 В2 будет натуральной величиной отрезка, при этом угол а - угол наклона прямой АВ к горизонтальной плоскости проекции П1.

    При перемещении прямой АВ во фронтальной плоскости уровня можно достичь положения прямой, перпендикулярной к плоскости П1.

    Этот метод применяется для определения натуральной величины отрезка, его угла наклона к плоскостям проекций, расстояния между параллельными прямыми и натуральной величины плоской фигуры.

    Метод вращения вокруг линии уровня

    Суть метода заключается в том, что осью вращения выбирается одна из линий уровня - горизонталь или фронталь плоскости или плоской фигуры. Таким образом, плоскость как бы поворачивается вокруг некоторой оси, принадлежащей этой плоскости, до положения, при которой эта плоскость становится параллельной одной из плоскостей проекций.

    Например, повернем плоский угол, образованный пересекающимися прямыми а и b (рис. 9.6).

    Для решения поставленной задачи проводят в плоскости угла горизонталь h и используют ее как ось вращения, вокруг которой будут вращаться прямые а и b и вершина К. Все точки вращаются в плоскостях, перпендикулярных к горизонтали, при этом точки 1 и 2 остаются неподвижными, а точка К вращается вокруг горизонтали. Из горизонтальной проекции К1 точки К проводят линию, перпендикулярную к оси вращения h1. Отрезок K1O1- горизонтальная проекция радиуса вращения точки К. Натуральную величину этого радиуса находят методом построения прямоугольного треугольника.

    На продолжении прямой O1K1 откладывают гипотенузу O1K0 и получают совмещенное положение К0 Соединив точки 11 и 21 с точкой К0, получают натуральную величину угла при вершине К.

    Этим способом находится натуральная величина любой плоской фигуры, плоского угла.

    Метод совмещения плоскостей

    Этот метод является частным случаем метода вращения вокруг линии уровня. В качестве оси вращения выбирается линия пересечения плоскости, в которой лежит та или иная фигура, с одной из плоскостей проекций. Иначе говоря, осью вращения служит горизонтальный или фронтальный след плоскости. При этом каждая точка, принадлежащая рассматриваемой фигуре, при вращении перемещается в плоскости, перпендикулярной к следу той плоскости, в которой она лежит. Например, плоскость , заданную своими следами  и , необходимо совместить с горизонтальной плоскостью проекций П1 (рис. 9.7).

    Для решения поставленной задачи берут на фронтальном следе  плоскости  произвольную точку 12 и находят ее горизонтальную проекцию 1, которая лежит на оси х. Далее из точки 11 проводят луч, перпендикулярный к горизонтальному следу плоскости  (любая точка при вращении должна перемещаться в плоскости, перпендикулярной к оси поворота). На нем находят совмещенное положение точки 1 — точку 10, как точку пересечения луча с дугой окружности радиусом . Точка 10 принадлежит одновременно и плоскости П1 и новому (совмещенному) положению плоскости . Через точку 10 проводят новый фронтальный след 0 плоскости . Следы 1 и 0 характеризуют новое (совмещенное) положение плоскости .

    9.6 Вопросы для самопроверки

    В чем состоит сущность преобразования ортогональных проекций способом замены плоскостей проекций?

    Сколько замен плоскостей проекций и в какой последовательности необходимо выполнить, чтобы перевести отрезок прямой общего положения в отрезок прямой частного положения?

    Сколько замен плоскостей проекций и в какой последовательности необходимо выполнить, чтобы определить натуральную величину плоской фигуры?

    В чем заключается способ вращения вокруг проецирующейоси?

    В каких плоскостях перемещается точка, вращаемая вокруг оси, перпендикулярной к плоскостям П1 и П2?

    Сущность способа плоскопараллельного перемещения.

    Что представляет собой преобразование чертежа способом вращения вокруг линии уровня?

    В чем заключается преобразование чертежа способом совмещения?

    9.7 Примеры решения задач 

    Ниже приведены решения одной и той же задачи вышеописанными методами.

    9.7.1 Задание: определить натуральную величину треугольника общего положения ABC, заданного проекциями вершин A1 B1 C1 и А2В2С2 (рис. 9.8), а также угол наклона плоскости треугольника к П1.

    1) Решение методом замены плоскостей проекций (рис. 9.9).

    Плоскость треугольника спроецируется в натуральную величину в том случае, если она будет в пространстве параллельна одной из плоскостей проекций. Одним преобразованием задачу решить невозможно. Она решается в два этапа: при первой замене плоскостей проекций получают плоскость треугольника ABC, перпендикулярную к новой плоскости проекций, при второй замене - получают плоскость треугольника, параллельную новой плоскости проекций.

    Первый этап. Одним из условий перпендикулярности двух плоскостей является наличие прямой, принадлежащей одной из плоскостей, перпендикулярной к другой плоскости. Используя этот признак, проводят через точку А в плоскости треугольника горизонталь (h). Затем на произвольном расстоянии от горизонтальной проекции треугольника A1B1C1 проводят ось x1 новой системы плоскостей проекций П1/П4 перпендикулярно к горизонтальной проекции горизонтали h1. В новой системе треугольник ABC стал перпендикулярен к новой плоскости проекций П4.

    На линиях проекционной связи в новой системе откладывают координаты z точек А, В, С с фронтальной проекции исходной системы плоскостей П1/П2. При соединении новых проекций А4, B4, С4 получают прямую линию, в которую спроецировалась плоскость треугольника ABC. На этом этапе определяется угол наклона плоскости треугольника к горизонтальной плоскости проекции П1 - угол . На чертеже это угол между осью x1 и проекцией С4А4В4.

    Второй этап. Выбираем новую плоскость проекции П5, параллельную плоскости треугольника, т.е. новую ось x2 проводят параллельно С4А4В4 на произвольном расстоянии. Получают новую систему П4/П5. Полученный треугольник А5В5С5 и есть искомая натуральная величина треугольника ABC.

    СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ