Начертательная геометрия типовые задачи и методика решений

Начертательная геометрия
  • Ортогональное  (прямоугольное) проецирование
  • Комплексный чертеж
  • Комплексный чертеж прямой
  • Взаимное положение точек и прямых,
    их принадлежность плоскости
  • Принадлежность точки и прямой плоскости
  • Определение расстояния между двумя точками
  • Нахождение натуральной величины плоской фигуры
  • Построение точки пересечения прямой с плоскостью
  • Взаимное положение плоскостей
  • Метрические задачи
  • Перпендикулярность прямой и плоскости
  • Касательная плоскость и нормаль к поверхности
  • Определение расстояний
  • Определение расстояния
    между скрещивающимися прямыми
  • Угол между прямой и плоскостью
  • Угол между плоскостями
  • Кривая линия
  • Понятие поверхности.
  • Линейчатая поверхность
  •  Гранные поверхности и многогранники
  • Принадлежность точки и линии поверхности вращения
  • Пересечение поверхности и плоскости
  •   Пересечение поверхностей
  • Способ концентрических сфер
  • Пересечение поверхностей второго порядка
  • Развертки гранных поверхностей
  • Приближенные развертки
    развертывающихся поверхностей
  • Условные развертки неразвертывающихся
    поверхностей
  • Аксонометрические проекции
  • Ортогональная (прямоугольная) диметрическая проекция
  • МЕТОДЫ ПРОЕЦИРОВАНИЯ
  • Проецирование точки на две и три плоскости проекций
  • Задание прямой в пространстве
  • Длина отрезка прямой и углы наклона прямой
    к плоскостям проекции
  • Задание плоскости
  • Признаки принадлежности точки и прямой плоскости
  • ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
  • ПРЯМАЯ ЛИНИЯ,
    ПЕРПЕНДИКУЛЯРНАЯ К ПЛОСКОСТИ
  • Замена плоскостей проекций
  • Метод плоскопараллельного перемещения
  • Решение методом вращения вокруг проецирующей оси
  • Сечение многогранников плоскостью
  • Поверхность вращения общего вида
  • ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ
  • Плоскость, касательная к поверхности
  • Примеры задачь
  • Определить натуральную длину отрезка АВ
  • Построить проекции линии пересечения двух плоскостей
  • Построение эпюра параллельных плоскостей
  • Построить линию пересечения двух плоскостей
  • Построить горизонтальную проекцию плоской линии,
  • Построить на развертке цилиндра линию,
    принадлежащую поверхности цилиндра 
  •   Построить пересечение двух поверхностей вращения
  • КОМПАС-3D
  • З а д а ч а 13. Построить линию пересечения двух плоскостей Г(АВС) и ∆(DEF) и отделить видимые их части от невидимых (рис.14).

    Рис. 14

    Р е ш е н и е . Первая часть задачи сводится к построению линии пересечения двух плоскостей.

    Известно, что линией пересечения двух плоскостей является прямая линия, для построения которой достаточно определить две точки, общие обеим плоскостям. В данном случае общие точки для обеих плоскостей найдены как точки пересечения: М – стороны DE треугольника DEF с плоскостью Г(АВС); N – стороны ВС треугольника АВС с плоскостью ∆(DEF). Точка М определена с помощью вспомогательной фронтально проецирующей плоскости θ(θ2), точка N – посредством горизонтально проецирующей плоскости Σ(Σ1) проведенных через DE и BC соответственно.

    Линия пересечения плоскостей ограничена отрезком MN прямой, заключённым между точками встречи контура одной фигуры с ограниченной плоскостью другой.

    Найдя линию пересечения, переходим к отделению видимых участков пластинок от невидимых, начав с горизонтальной проекции (вид а сверху). С этой целью рассмотрим две горизонтально конкурирующие точки 5 Î АВ и 6 Î DE. Сравнивая расстояния фронтальных проекций этих точек по отношению к плоскости П1. замечаем, что точка 6 пластинки DEF, а следовательно, и участок стороны DE, находится под плоскостью пластинки АВС. В точке М происходит переход невидимого участка прямой DE к видимому.

    Аналогичными рассуждениями при помощи фронтально конкурирующих точек 1 Î АВ и 7 Î DE определяем видимость на фронтальной проекции.

    З а д а ч а 14. Дана точка А(А1;А2). Найти её проекции в системе П1/П4

    (рис.15а).

    На рис. 15 показаны те построения, которые надо произвести на эпюре, чтобы от проекций точки А(А1;А2) в системе П1/П2 перейти к проекциям (А1;А4) той же точки в системе П1/П4..

    1.Опускаем из А1 перпендикуляр на новую ось проекций П1/П4. На построенном перпендикуляре откладываем (от новой оси) отрезок А4Ах'=А2Ах.

    Полученная таким образом точка А4 является проекцией точки А(А1;А2) на новую плоскость проекции П4.

    З а д а ч а 15. Дана точка А(А1;А2) найти её проекции в системе П2/П4

    (рис.15б).

    На рис.15б показаны те построения, которые надо произвести на эпюре, чтобы от проекции (А1;А2) точки А в системе П1/П2 перейти к проекциям (А2; А4) той же точки в системе П2/П 4 .

    Рис. 15

    Для построения на эпюре новой проекции точки при замене одной из плоскостей проекций надо опустить перпендикуляр на новую ось из той же проекции точки, которая не меняется, и отложить на нем от новой оси в соответствующую сторону расстояние от заменяемой проекции до старой оси.

    З а д а ч а 16. Преобразовать горизонтально проецирующую плоскость Г(АВСD) в плоскость уровня (рис.16).

    Р е ш е н и е . Плоскость Г – горизонтально проецирующая. Для преобразования ее в плоскость уровня достаточно взамен плоскости проекции П2 ввести новую плоскость П4 , параллельную плоскости Г(АВСD). Линию пересечения плоскостей П1 и П4 принимаем за новую ось проекций X1

    .

    новая ось X1 параллельна вырожденной проекции Г1 плоскости Г, т.к. плоскость  П4 параллельна данной плоскости Г. Построив проекции точек А, В, С и D  в новой системе П1 П4 и соединив их, получим проекцию четырехугольника  А4В4С4D4, отображающего свои натуральные размеры.
    СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ