Начертательная геометрия типовые задачи и методика решений

Начертательная геометрия
  • Ортогональное  (прямоугольное) проецирование
  • Комплексный чертеж
  • Комплексный чертеж прямой
  • Взаимное положение точек и прямых,
    их принадлежность плоскости
  • Принадлежность точки и прямой плоскости
  • Определение расстояния между двумя точками
  • Нахождение натуральной величины плоской фигуры
  • Построение точки пересечения прямой с плоскостью
  • Взаимное положение плоскостей
  • Метрические задачи
  • Перпендикулярность прямой и плоскости
  • Касательная плоскость и нормаль к поверхности
  • Определение расстояний
  • Определение расстояния
    между скрещивающимися прямыми
  • Угол между прямой и плоскостью
  • Угол между плоскостями
  • Кривая линия
  • Понятие поверхности.
  • Линейчатая поверхность
  •  Гранные поверхности и многогранники
  • Принадлежность точки и линии поверхности вращения
  • Пересечение поверхности и плоскости
  •   Пересечение поверхностей
  • Способ концентрических сфер
  • Пересечение поверхностей второго порядка
  • Развертки гранных поверхностей
  • Приближенные развертки
    развертывающихся поверхностей
  • Условные развертки неразвертывающихся
    поверхностей
  • Аксонометрические проекции
  • Ортогональная (прямоугольная) диметрическая проекция
  • МЕТОДЫ ПРОЕЦИРОВАНИЯ
  • Проецирование точки на две и три плоскости проекций
  • Задание прямой в пространстве
  • Длина отрезка прямой и углы наклона прямой
    к плоскостям проекции
  • Задание плоскости
  • Признаки принадлежности точки и прямой плоскости
  • ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
  • ПРЯМАЯ ЛИНИЯ,
    ПЕРПЕНДИКУЛЯРНАЯ К ПЛОСКОСТИ
  • Замена плоскостей проекций
  • Метод плоскопараллельного перемещения
  • Решение методом вращения вокруг проецирующей оси
  • Сечение многогранников плоскостью
  • Поверхность вращения общего вида
  • ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ
  • Плоскость, касательная к поверхности
  • Примеры задачь
  • Определить натуральную длину отрезка АВ
  • Построить проекции линии пересечения двух плоскостей
  • Построение эпюра параллельных плоскостей
  • Построить линию пересечения двух плоскостей
  • Построить горизонтальную проекцию плоской линии,
  • Построить на развертке цилиндра линию,
    принадлежащую поверхности цилиндра 
  •   Построить пересечение двух поверхностей вращения
  • КОМПАС-3D
  • ОБРАЗОВАНИЕ ПРОЕКЦИЙ. МЕТОДЫ ПРОЕЦИРОВАНИЯ

    Плоский чертеж какого-либо технического объекта может состоять из нескольких изображений, по которым и создается представление об объемных формах геометрического тела. Такие плоские изображения называются проекциями рассматриваемого объекта.

    Под проекцией любой точки понимают ее как бы «теневое» отображение на какой-либо плоскости. Так, если поместить материальную точку 1 между источниками света (световых лучей) 2 и какой-либо плоскостью 3 (рис. 2.1), то на этой плоскости увидим тень 4 этой точки, которую и принято называть проекцией точки.

    Рис. 2.1

    Взаимное положение источника света и плоскости может быть произвольным. В зависимости от величины угла между лучом 2-1-4 и плоскостью 3 возможны два принципиально отличных варианта проекций точки:

    значение угла не равно 90°, тогда проекция точки называется косоугольной;

    значение угла равно 90° (прямой угол), тогда проекция называется прямоугольной, или ортогональной (от греч. orthogonios - прямо угольный).

    Курс начертательной геометрии рассматривает два основных метода проецирования: центральный и параллельный.

    2.1 Метод центрального проецирования

    Суть метода заключается в следующем: пусть даны в пространстве треугольник ABC, плоскость П' и произвольная точка S (рис. 2.2). Проведя из точки S прямые линии (лучи) через вершины треугольника ABC до пересечения их с плоскостью П', получают точки А', В', С'. Эти точки называют центральными проекциями точек А, В, С. Соединив прямыми линиями точки А', В', С', получают центральную проекцию треугольника ABC.

    Точка S называется центром проецирования, плоскость П' - плоскостью проекций, прямые SA', SB', SC' - проецирующими лучами.

    Рис. 2.2

    Метод параллельного проецирования

    Если точку S удалить от плоскости П' в бесконечность, проецирующие лучи будут практически параллельны между собой. Тогда они пересекутся с плоскостью проекций П' в точках А', В', С', которые называются параллельными проекциями точек А, В, С. Соединив, как и в предшествующем случае, точки А', В', С' между собой, получают треугольник А'В'С', который будет уже параллельной проекцией треугольника ABC. На рис. 2.3 стрелкой s обозначено направление проецирования.

    Если направление s перпендикулярно к плоскости П', то проекция треугольника называется прямоугольной, или ортогональной.

    Если направление луча s не перпендикулярно к плоскости П', то проекция треугольника называется косоугольной.

    Рис. 2.3

    Система плоскостей проекций в практике решения инженерных задач

    Наибольшее практическое применение нашёл метод ортогонального проецирования на две взаимно перпендикулярные плоскости проекций, одна из которых расположена горизонтально, а другая -вертикально. Они соответственно получили обозначения: горизонтальная плоскость проекций – П1, и фронтальная — П2. Эти плоскости пересекаются между собой под прямым углом, образуя линию пересечения — ось х, и делят пространство на четыре четверти, которые принято обозначать против хода часовой стрелки римскими цифрами I, II, III и IV (рис. 2.4). В случае недостаточной информативности об объекте по двум проекциям на указанные плоскости hi и П2 используют третью плоскость П3, перпендикулярную одновременно П1 и П2. Она называется профильной плоскостью проекций. Плоскость Пз пересекается с плоскостью П1 образуя ось у, и с плоскостью П2, образуя ось z. Указанные плоскости делят всё пространство вокруг уже на восемь частей, которые называются октантами и обозначаются римскими цифрами от I до VIII.

    СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ