Начертательная геометрия типовые задачи и методика решений

Начертательная геометрия
  • Ортогональное  (прямоугольное) проецирование
  • Комплексный чертеж
  • Комплексный чертеж прямой
  • Взаимное положение точек и прямых,
    их принадлежность плоскости
  • Принадлежность точки и прямой плоскости
  • Определение расстояния между двумя точками
  • Нахождение натуральной величины плоской фигуры
  • Построение точки пересечения прямой с плоскостью
  • Взаимное положение плоскостей
  • Метрические задачи
  • Перпендикулярность прямой и плоскости
  • Касательная плоскость и нормаль к поверхности
  • Определение расстояний
  • Определение расстояния
    между скрещивающимися прямыми
  • Угол между прямой и плоскостью
  • Угол между плоскостями
  • Кривая линия
  • Понятие поверхности.
  • Линейчатая поверхность
  •  Гранные поверхности и многогранники
  • Принадлежность точки и линии поверхности вращения
  • Пересечение поверхности и плоскости
  •   Пересечение поверхностей
  • Способ концентрических сфер
  • Пересечение поверхностей второго порядка
  • Развертки гранных поверхностей
  • Приближенные развертки
    развертывающихся поверхностей
  • Условные развертки неразвертывающихся
    поверхностей
  • Аксонометрические проекции
  • Ортогональная (прямоугольная) диметрическая проекция
  • МЕТОДЫ ПРОЕЦИРОВАНИЯ
  • Проецирование точки на две и три плоскости проекций
  • Задание прямой в пространстве
  • Длина отрезка прямой и углы наклона прямой
    к плоскостям проекции
  • Задание плоскости
  • Признаки принадлежности точки и прямой плоскости
  • ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
  • ПРЯМАЯ ЛИНИЯ,
    ПЕРПЕНДИКУЛЯРНАЯ К ПЛОСКОСТИ
  • Замена плоскостей проекций
  • Метод плоскопараллельного перемещения
  • Решение методом вращения вокруг проецирующей оси
  • Сечение многогранников плоскостью
  • Поверхность вращения общего вида
  • ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ
  • Плоскость, касательная к поверхности
  • Примеры задачь
  • Определить натуральную длину отрезка АВ
  • Построить проекции линии пересечения двух плоскостей
  • Построение эпюра параллельных плоскостей
  • Построить линию пересечения двух плоскостей
  • Построить горизонтальную проекцию плоской линии,
  • Построить на развертке цилиндра линию,
    принадлежащую поверхности цилиндра 
  •   Построить пересечение двух поверхностей вращения
  • КОМПАС-3D
  • Аксонометрические проекции

    В переводе с греческого языка слово "аксонометрия" означает измерение по осям. Особенностью аксонометрического проецирования является то, что вместе с фигурой на плоскость проецируется и пространственная система координат, связанная с этой фигурой. При этом ни одна из осей системы координат не проецируется в точку. Использование аксонометрического проецирования позволяет повысить наглядность изображения фигуры.

    Рассмотрим проекционную схему получения аксонометрической проекции простейшей фигуры – точки (рис. 14.1). Точка A и пространственная система координат Oxyz связаны координатной ломаной ОAxA1A, звеньями которой являются координатные отрезки ïOAxï = ïxAï, ïAxA1ï = ïyAï, ïA1Aï = ïzAï. Плоскость П' – аксонометрическая плоскость, s – направление проецирования. Все проецирующие прямые параллельны s. Если прямая s не перпендикулярна П', то имеем косоугольное проецирование и получим косоугольную аксонометрическую проекцию. Если прямая s перпендикулярна П', то имеем ортогональное проецирование и получим ортогональную (прямоугольную) аксонометрическую проекцию. В дальнейшем рассматривается ортогональное проецирование и ортогональные аксонометрические проекции.

    На плоскости П' после проецирования получим: A' – аксонометрическая проекция точки A; O'x'y'z' – аксонометрическая система координат (проекция системы Oxyz); x', y', z' – аксонометрические оси (проекции осей x, y, z); A1' – аксонометрическая проекция горизонтальной проекции точки A или, короче, вторичная проекция точки A; O'Ax' A1' A' – аксонометрическая координатная ломаная (проекция ломаной OAxA1A). Звенья аксонометрической координатной ломаной параллельны соответствующим аксонометрическим осям, так как параллельные прямые проецируются в параллельные прямые.

    Пусть угол между осью x и осью x' (проекция x на П') равен a, между y и y' – b, между z и z' – g. Если отрезок расположен на оси x или на линии параллельной оси x, то его угол наклона к плоскости П' равен a, если – на оси y, то – b, если – на оси z, то – g. Тогда ïO'Ax'ï = ïOAxïcosa, ïAx'A1'ï = ïAxA1ïcosb, ïA1'A'ï = ïA1Aïcosg. Введем следующие обозначения: u = cosa; v = cosb; w = cosg. Числа u, v, w называются коэффициентами искажения по аксонометрическим осям x', y', z' соответственно. Зная координаты точки A(xA; yA; zA) и коэффициенты u, v, w, можно найти аксонометрические координаты точки A' (xA';yA';zA'): xA' = xAu; yA'= yAv; yA' = yAw. Для коэффициентов искажения справедлива зависимость

     u2 + v2 + w2 = 2, (14.1) 

    которую принимаем без доказательства.

    Поскольку проекции фигуры на параллельные плоскости равны, то вместо П' (рис. 14.1) можно взять любую плоскость ей параллельную. Для повышения наглядности ортогональных аксонометрических проекций, положительные полуоси осей x, y, z располагают в одном полупространстве относительно аксонометрической плоскости, проведенной через начало координат (рис. 14.1, точка O). При этом углы a, b, g будут более нуля, но менее девяносто градусов. Тогда коэффициенты u, v, w (косинусы этих углов) будут менее единицы, но более нуля.

    Если известны коэффициенты искажения u, v, w, то легко найти углы a, b, g (a = arcos u, b = arcos v, g = arcos w). Зная коэффициенты искажения u, v, w и определив по ним углы a, b, g, можно найти углы между аксонометрическими осями. Формула (1.1) для расчета проекции угла, которая при проецировании прямого угла (j = 900) на плоскость П' (j1 = j ') имеет вид

     cosj ' = – tga×tgb  (14.2) 

    Например, угол между осями x и y равен 900, т.е. (x,y) = 900, он проецируется на плоскость П' в угол между осями x' и y'. По формуле (14.2) cos(x',y') = – tga×tgb, где a – угол между x и x' , b – угол между y и y'. По величине косинуса найдем угол между аксонометрическими осями x' и y'. Аналогично можно найти и два других угла.

    Обратим внимание на то, что углы между аксонометрическими осями более 900 (тупые), т.е. прямые углы между осями проецируются в тупые углы между аксонометрическими осями. Действительно, в формуле (14.2) тангенсы острых углов более нуля, значит, косинус проекции угла отрицателен, т.е. проекция угла более 900.


    Рассмотрим построение аксонометрической проекции точки A по комплексному чертежу этой точки (рис. 14.2). Пусть на аксонометрической плоскости П' известно положение осей x', y', z' и известны коэффициенты искажения по этим осям u, v, w (рис. 14.3). Обратим внимание на то, что на рис. 14.3 аксонометрическая плоскость является плоскостью чертежа. Ось z' всегда располагается вертикально. Замерив на комплексном чертеже соответствующие отрезки, узнаем координаты xA, yA, zA. Умножим координаты на коэффициенты искажения, построим аксонометрическую координатную ломаную OAx'A1'A' и аксонометрическую проекцию точки A – точку A'. Если какая – либо координата менее нуля (отрицательная), то аксонометрический координатный отрезок (звено аксонометрической координатной ломаной) откладывается в противоположную сторону относительно положительного направления, указанного стрелкой на аксонометрической оси. 

    Ортогональная (прямоугольная) изометрическая проекция 

    Ортогональная изометрическая проекция (изометрия) является ортогональной аксонометрической проекцией при u = v = w. По формуле (14.1) получим u = v = w = 0,82. По формуле (14.2) определим, что угол между любыми осями 1200.

    Построение изометрии точки выполняется так же, как показано на рис. 14.2, 14.3. Каждую координату точки необходимо умножить на 0,82. Такая изометрия называется точной (теоретической). Если изометрию точки выполнить в масштабе 1,22 : 1, то координату точки нужно умножить на 0,82 (коэффициент искажения по оси), а затем умножить на 1,22 (увеличение из – за выполнения в масштабе) и тогда изометрическая координата, например, xA' равна 0,82×1,22×xA = xA. Значит, при выполнении изометрии в масштабе 1,22 : 1 (масштаб приведения) можно координаты точки не умножать на коэффициенты искажения, а брать их такими же, как на комплексном чертеже. Изометрия, выполненная в масштабе 1,22 : 1, называется приведенной (практической), коэффициенты искажения при этом u = v = w = 1.


    На рис. 14.4 показан комплексный чертеж куба со срезанной вершиной. На рис. 14.5 построена его приведенная изометрия. Рядом с изометрией дана схема расположения изометрических осей с указанием коэффициентов искажения и масштаба приведения. На рис. 14.4 в качестве системы координат, связанной с кубом взята Gtqr, а не система координат Oxyz комплексного чертежа, как на рис. 14.2, 14.3. Система Gtqr задана своими проекциями G1t1q1r1 и G2t2q2r2. Теперь эта система проецируется в изометрическую систему координат, и относительно нее берутся координаты вершин куба. Изометрию куба легко построить, если построить изометрию его вершин и соединить их. Постройте, в качестве упражнения, изометрию куба, связав с ним систему координат комплексного чертежа Oxyz, которая в этом случае будет проецироваться в изометрическую систему координат.


    На рис. 14.6 показан комплексный чертеж кривой k. На рис. 14.7 построена приведенная изометрия этой кривой. В качестве системы координат, связанной с кривой взята система координат комплексного чертежа Oxyz, которая проецируется в изометрическую систему координат O'x'y'z'. Для построения изометрии кривой необходимо построить изометрию ряда ее точек и соединить их кривой линией. Так можно построить изометрию любой кривой, но для построения изометрии окружности удобно использовать специальные методы.

    Пусть окружность, диаметром d, расположена в плоскости Oxy (или в плоскости параллельной Oxy). Эта окружность проецируется на аксонометрическую плоскость в эллипс. Все диаметры эллипса, кроме одного, будут меньше диаметра окружности. Большой диаметр эллипса равен диаметру окружности и является проекцией диаметра окружности, расположенного на линии уровня, параллельной аксонометрической плоскости П'. Большой диаметр расположен на проекции линии уровня. Линия уровня "сохранит" не только длину диаметра d окружности, но и прямой угол с прямой линией, которая ей перпендикулярна (теорема о проецировании прямого угла). Ось z перпендикулярна плоскости Oxy, а, значит, перпендикулярна любой прямой этой плоскости, в том числе и линии уровня. Тогда аксонометрическая проекция линии уровня, на которой расположен большой диаметр эллипса, перпендикулярна проекции оси z – аксонометрической оси z'. Малый диаметр эллипса перпендикулярен большому диаметру.

    При выполнении изометрии в масштабе 1,22 : 1, большой диаметр будет равен 1,22d. Малый диаметр равен 0,71d (принимаем без вывода). Эллипс строится по большому и малому диаметрам. Повторяя все сказанное выше для плоскостей Oxz и Oyz, получим расположение эллипсов, показанное на рис. 14.8. Окружность t, расположенная в плоскости Oxy или ей параллельной плоскости, проецируется на П' в эллипс t', который является изометрией окружности t. Изометрией окружности n, принадлежащей плоскости Oxz или ей параллельной плоскости, будет эллипс n'. Изометрией окружности k, принадлежащей плоскости Oyz или ей параллельной плоскости, будет эллипс k'. Изометрии окружностей, принадлежащих плоскостям Oxy, Oxz, Oyz или им параллельным плоскостям, строятся в такой последовательности: строится изометрия центра окружности; строятся большой и малый диаметры; по большому и малому диметрам строится ряд точек эллипса; точки эллипса соединяются плавной кривой.

    Если окружность принадлежит плоскости общего положения, то прямой, перпендикулярной этой плоскости, на изометрии нет. Поэтому необходимо на комплексном чертеже через центр окружности провести отрезок прямой перпендикулярной плоскости окружности. Затем построить изометрию этого отрезка и провести большой диаметр, перпендикулярно изометрии этого отрезка, через изометрию центра окружности. Большой диаметр равен 1,22, где d – диаметр окружности. Далее, на комплексном чертеже окружности взять любую точку окружности и построить ее изометрию. Теперь на изометрии есть большой диаметр эллипса и одна его точка. Значит, можно выполнить построение эллипса по большому диаметру и точке.

     

     

     

     

     

     

    СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ