Начертательная геометрия типовые задачи и методика решений

Начертательная геометрия
  • Ортогональное  (прямоугольное) проецирование
  • Комплексный чертеж
  • Комплексный чертеж прямой
  • Взаимное положение точек и прямых,
    их принадлежность плоскости
  • Принадлежность точки и прямой плоскости
  • Определение расстояния между двумя точками
  • Нахождение натуральной величины плоской фигуры
  • Построение точки пересечения прямой с плоскостью
  • Взаимное положение плоскостей
  • Метрические задачи
  • Перпендикулярность прямой и плоскости
  • Касательная плоскость и нормаль к поверхности
  • Определение расстояний
  • Определение расстояния
    между скрещивающимися прямыми
  • Угол между прямой и плоскостью
  • Угол между плоскостями
  • Кривая линия
  • Понятие поверхности.
  • Линейчатая поверхность
  •  Гранные поверхности и многогранники
  • Принадлежность точки и линии поверхности вращения
  • Пересечение поверхности и плоскости
  •   Пересечение поверхностей
  • Способ концентрических сфер
  • Пересечение поверхностей второго порядка
  • Развертки гранных поверхностей
  • Приближенные развертки
    развертывающихся поверхностей
  • Условные развертки неразвертывающихся
    поверхностей
  • Аксонометрические проекции
  • Ортогональная (прямоугольная) диметрическая проекция
  • МЕТОДЫ ПРОЕЦИРОВАНИЯ
  • Проецирование точки на две и три плоскости проекций
  • Задание прямой в пространстве
  • Длина отрезка прямой и углы наклона прямой
    к плоскостям проекции
  • Задание плоскости
  • Признаки принадлежности точки и прямой плоскости
  • ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
  • ПРЯМАЯ ЛИНИЯ,
    ПЕРПЕНДИКУЛЯРНАЯ К ПЛОСКОСТИ
  • Замена плоскостей проекций
  • Метод плоскопараллельного перемещения
  • Решение методом вращения вокруг проецирующей оси
  • Сечение многогранников плоскостью
  • Поверхность вращения общего вида
  • ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ
  • Плоскость, касательная к поверхности
  • Примеры задачь
  • Определить натуральную длину отрезка АВ
  • Построить проекции линии пересечения двух плоскостей
  • Построение эпюра параллельных плоскостей
  • Построить линию пересечения двух плоскостей
  • Построить горизонтальную проекцию плоской линии,
  • Построить на развертке цилиндра линию,
    принадлежащую поверхности цилиндра 
  •   Построить пересечение двух поверхностей вращения
  • КОМПАС-3D
  • Приближенные развертки развертывающихся поверхностей

     Построение приближенных разверток выполняется в следующей последовательности:

    заданную развертывающуюся линейчатую поверхность заменяют (аппроксимируют) гранной поверхностью;

    строят точную развертку гранной поверхности;

    точную развертку принимают за приближенную развертку заданной поверхности.

    Для некоторых линейчатых развертывающихся поверхностей нет необходимости в их замене гранными поверхностями. Так, например, отсек цилиндрической поверхности вращения радиуса r и высотой h имеет разверткой прямоугольник со сторонами h и 2pr (рис. 13.5).

    Разверткой конической поверхности вращения высотой h и основанием радиуса r является сектор радиуса R =  c углом a =   (рис. 13.6). Рассмотрим пример построения приближенных разверток.

     

     

     

     

     

     

    Задача. Дан отсек конической поверхности (рис. 13.7). Построить его приближенную развертку.

    Плоскую кривую линию – направляющую конической поверхности, вначале заменяют вписанной ломаной линией ABCD(A1B1C1D1, A2B2C2D2), которая по условию задачи принадлежит плоскости проекций П1 и поэтому A1B1C1D1 – ее НВ. Затем соединяют вершины ломаной с вершиной S конической поверхности и получают вписанную пирамидальную поверхность SABCD, которой заменяют данную коническую поверхность. Используя метод прямоугольного треугольника, строят диаграмму НВ ребер вписанной пирамидальной поверхности. При этом SS0 – общая разность высот концов ребер пирамиды; SD = S1D1 , SC = S1C1 , SB = S1B1 , SA = S1A1; S0D, S0C, S0B, S0A – представляют собой НВ ребер пирамиды. SDCBA – развертка боковой поверхности заданного конического отсека.

    Задача. Дан отсек поверхности эллиптического цилиндра (рис. 13.8). Построить развертку ее боковой поверхности.

    Впишем в данную поверхность призматическую поверхность, разделив направляющую линию цилиндра – окружность, на равное число частей, например, на 12 (на рисунке, в силу симметричности заданной поверхности, для простоты построений выполнено деление половины поверхности на 6 частей). Боковые ребра вписанной призмы являются фронталями, а ее основания – многоугольники принадлежат горизонтальным плоскостям уровня. По этой причине боковые ребра проецируются на П2 в НВ, а многоугольники оснований – в НВ на П1. Отмеченные условия задачи соответствуют методу раскатки для построения развертки вписанной призмы. Поскольку призма имеет плоскость симметрии, проходящую через линию центров образующих эллиптический цилиндр окружностей и являющуюся фронтальной плоскостью уровня, то для сокращения построений выполним построения развертки только половины призмы. Вращение призмы по методу раскатки следует начинать с ребра КК1 (К1К11, К2К21). Поэтому плоскостью развертки призмы будет фронтальная плоскость уровня, проходящая через ребро КК1. Последовательным вращением вокруг ребер призмы добиваемся совмещения всех ее граней с плоскостью развертки. При этом К2F = K21F1 = K11F11 = K1F1; FE = F1E1 = F11E11 = F1E1 и т. д. Полученный многоугольник ABCD… D1C1B1A1 представляет собой точную развертку половины боковой поверхности вписанной призмы, которая в свою очередь определяет приближенную развертку соответствующей половины поверхности эллиптического цилиндра.

     Задача. Дан отсек торсовой поверхности (рис. 13.9). Построить его развертку.

    Торсовая поверхность – это линейчатая развертывающаяся поверхность, образованная касательными прямыми к пространственной кривой, которая имеет название ребра возврата этой поверхности. В нашей задаче отсек заданной поверхности ограничен ребром возврата а (а1, а2), плоской кривой m (m1, m2) и отрезком АА1 ее образующей. Заменим кривую m вписанной ломаной линией A1B1C1D1E1F с проекциями A11B11C11D11E11F1 и A21B21C21D21E21F2. Затем поступим следующим образом:

    соединим точки А и В1 для получения отрезка АВ1(А1В11 , А2В21);

    отметив точку пересечения АВ1 а = В(В1, В2), соединим точки В и С1 для получения отрезка ВС1(В1С11, В2С21);

    отметив точку пересечения ВС1 а = С(С1, С2), соединим точки С и D1 для получения отрезка СD1(С1D11 , C2D21);

    отметив точку пересечения СD1 а = D(D1, D2), соединим точки D и Е1 для получения отрезка DЕ1(D1Е11 , D2Е21);

    отметив точку пересечения DЕ1 а = Е(Е1, Е2), соединим точки Е и F1 для получения отрезка EF(E1F1, E2F2).

    В итоге выполнения построений получим вписанный в ребро возврата а пространственный многоугольник ABCDEF(A1B1C1D1E1F1, A2B2C2D2E2F2) и вписанную в торсовую поверхность гранную поверхность с ребрами АА1, АВ1 , ВС1 , СD1 , DE1 , EF.

    Очевидно, гранями вписанной в торсовую поверхность гранной поверхности являются треугольники, у которых две вершины являются вершинами плоской ломаной линии, вписанной в линию m, а третья вершина – это вершина пространственной ломаной, вписанной в ребро возврата а. Сторона одного из двух соседних треугольников принадлежит стороне другого и служит ребром гранной поверхности. Дальнейшие построения заключаются в определении НВ двух из трех сторон каждого треугольника методом прямоугольного треугольника, поскольку третья сторона спроецирована на П1 в НВ. Для этого строится диаграмма НВ сторон треугольников – граней. При этом на прямой АА0 от точки А0 откладываются разности высот концов отрезков – сторон треугольников, а по оси х от точки А0 – длины горизонтальных проекций этих сторон. Причем А0F0 = E1F1 , А0E01 = D1E11 , А0D01 = C1D11 , А0C01 = B1C11 ,

    А0В01 = А1В11, А0A1 = А1A11.Затем выполняются последовательные построения треугольников – граней по трем их сторонам, приводящие к плоской области, ограниченной линией ABCD…D1C1B1A1. Эта плоская область будет приближенной разверткой заданной торсовой поверхности.

    СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ