Начертательная геометрия типовые задачи и методика решений

Начертательная геометрия
  • Ортогональное  (прямоугольное) проецирование
  • Комплексный чертеж
  • Комплексный чертеж прямой
  • Взаимное положение точек и прямых,
    их принадлежность плоскости
  • Принадлежность точки и прямой плоскости
  • Определение расстояния между двумя точками
  • Нахождение натуральной величины плоской фигуры
  • Построение точки пересечения прямой с плоскостью
  • Взаимное положение плоскостей
  • Метрические задачи
  • Перпендикулярность прямой и плоскости
  • Касательная плоскость и нормаль к поверхности
  • Определение расстояний
  • Определение расстояния
    между скрещивающимися прямыми
  • Угол между прямой и плоскостью
  • Угол между плоскостями
  • Кривая линия
  • Понятие поверхности.
  • Линейчатая поверхность
  •  Гранные поверхности и многогранники
  • Принадлежность точки и линии поверхности вращения
  • Пересечение поверхности и плоскости
  •   Пересечение поверхностей
  • Способ концентрических сфер
  • Пересечение поверхностей второго порядка
  • Развертки гранных поверхностей
  • Приближенные развертки
    развертывающихся поверхностей
  • Условные развертки неразвертывающихся
    поверхностей
  • Аксонометрические проекции
  • Ортогональная (прямоугольная) диметрическая проекция
  • МЕТОДЫ ПРОЕЦИРОВАНИЯ
  • Проецирование точки на две и три плоскости проекций
  • Задание прямой в пространстве
  • Длина отрезка прямой и углы наклона прямой
    к плоскостям проекции
  • Задание плоскости
  • Признаки принадлежности точки и прямой плоскости
  • ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
  • ПРЯМАЯ ЛИНИЯ,
    ПЕРПЕНДИКУЛЯРНАЯ К ПЛОСКОСТИ
  • Замена плоскостей проекций
  • Метод плоскопараллельного перемещения
  • Решение методом вращения вокруг проецирующей оси
  • Сечение многогранников плоскостью
  • Поверхность вращения общего вида
  • ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ
  • Плоскость, касательная к поверхности
  • Примеры задачь
  • Определить натуральную длину отрезка АВ
  • Построить проекции линии пересечения двух плоскостей
  • Построение эпюра параллельных плоскостей
  • Построить линию пересечения двух плоскостей
  • Построить горизонтальную проекцию плоской линии,
  • Построить на развертке цилиндра линию,
    принадлежащую поверхности цилиндра 
  •   Построить пересечение двух поверхностей вращения
  • КОМПАС-3D
  • Пересечение поверхностей второго порядка

    В общем случае две поверхности второго порядка пересекаются по пространственной кривой четвертого порядка. Следует отметить, что при некоторых особых положениях относительно друг друга поверхности второго порядка могут пересекаться по плоским кривым второго порядка, то есть пространственная кривая пересечения распадается на две плоские кривые. Условия распадения кривой четвертого порядка на две кривые второго порядка формулируются в виде следующих теорем.

    Теорема 1. Если две поверхности второго порядка пересекаются по одной плоской кривой, то они пересекаются и еще по одной плоской кривой. Иллюстрацией этой теоремы является рис. 12.19, на котором показаны фронтальные проекции сферы и эллиптического конуса, пересекающихся по двум окружностям – m(m2) и n(n2). Окружность m параллельна основанию (плоскости окружности) конической поверхности, а окружность n построена в соответствии с теоремой 1.

    Теорема 2 (теорема о двойном соприкосновении). Если две поверхности второго порядка имеют касание в двух точках, то линия их взаимного пересечения распадается на две плоские кривые второго порядка.

     Плоскости этих кривых пройдут через прямую, соединяющую точки касания. На рис. 12.20 показано построение линии пересечения конической поверхности вращения и эллиптического цилиндра (оси поверхностей пересекаются и параллельны П2). Линии пересечения - эллипсы – лежат во фронтально проецирующих плоскостях, проходящих через прямую АВ, соединяющую точки касания А и В, а также точки 1, 2 и 3, 4 (точки пересечения очерков поверхностей).

    Теорема 3 (теорема Монжа). Если две поверхности второго порядка описаны около третьей поверхности второго порядка или вписаны в нее, то линия их взаимного пересечения распадается на две плоские кривые. Плоскости этих кривых пройдут через прямую, соединяющую точки пересечения линий касания. Эта теорема является частным случаем теоремы 2. Если оси пересекающихся поверхностей вращения параллельны какой – либо плоскости проекций, то на эту плоскость кривые линии проецируются в отрезки прямых.

    На рис. 12.21 приведен пример построения линии пересечения двух конических поверхностей вращения, оси которых пересекаются и параллельны П2, на основании теоремы Монжа. Исходные поверхности описаны вокруг сферы и имеют с ними касание по окружностям t(t2) и k(k2). Эти окружности пересекаются в точках 1 и 2. Плоскости линий пересечения проходят через прямую 12 и точки пересечения очерков поверхностей А, D, В и С.

     13. Развертки поверхностей

     

     Определение. Если поверхность, представляемую в виде тонкой, гибкой и нерастяжимой пленки, можно путем изгибания совместить с плоскостью без разрывов и складок, то поверхность, обладающая этим свойством, называется развертывающейся, а фигура, полученная в результате совмещения поверхности с плоскостью, называется разверткой. В математике доказано, что к развертывающимся относятся лишь три группы линейчатых поверхностей: конические, цилиндрические и торсовые (поверхности касательных к пространственной кривой). У этих поверхностей вдоль каждой прямолинейной образующей существует единственная касательная плоскость, у остальных линейчатых поверхностей вдоль образующей прямой существует бесконечное множество таких плоскостей. Изгибание поверхности на плоскость приводит к соответствию, устанавливаемому между множеством точек поверхности и множеством точек ее развертки. Это соответствие обладает следующими свойствами:

    точке поверхности соответствует единственная точка развертки и наоборот;

    длины соответственных линий поверхности и ее развертки равны;

    углы, образованные линиями на поверхности, равны углам, образованным соответствующими линиями на развертке;

    площади соответственных фигур на поверхности и на развертке равны.

    Из приведенных свойств вытекают следствия:

    прямая линия поверхности преобразуется в прямую линию развертки;

     2) параллельные линии поверхности преобразуются в параллельные прямые ее 

    развертки.

    Для развертывающихся линейчатых поверхностей строятся графически приближенные развертки, поскольку в процессе построения развертки эти поверхности заменяются (аппроксимируются) вписанными или описанными многогранными поверхностями. Точные развертки аппроксимирующих многогранных поверхностей принимаются за приближенные развертки развертывающихся поверхностей. Для поверхностей, которые не являются развертывающимися, строятся условные развертки по следующей схеме:

    НП Þ РП Þ ГП ~ ТР, где НП – неразвертывающая поверхность, РП – развертывающаяся поверхность, ГП – гранная поверхность, ТР – точная развертка, Þ – этап аппроксимации предыдущей поверхности последующей. Поскольку в результате последовательных аппроксимаций исходная поверхность заменяется гранной, то рассмотрим вначале построения точных разверток гранных поверхностей.

    СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ