Начертательная геометрия типовые задачи и методика решений

Начертательная геометрия
  • Ортогональное  (прямоугольное) проецирование
  • Комплексный чертеж
  • Комплексный чертеж прямой
  • Взаимное положение точек и прямых,
    их принадлежность плоскости
  • Принадлежность точки и прямой плоскости
  • Определение расстояния между двумя точками
  • Нахождение натуральной величины плоской фигуры
  • Построение точки пересечения прямой с плоскостью
  • Взаимное положение плоскостей
  • Метрические задачи
  • Перпендикулярность прямой и плоскости
  • Касательная плоскость и нормаль к поверхности
  • Определение расстояний
  • Определение расстояния
    между скрещивающимися прямыми
  • Угол между прямой и плоскостью
  • Угол между плоскостями
  • Кривая линия
  • Понятие поверхности.
  • Линейчатая поверхность
  •  Гранные поверхности и многогранники
  • Принадлежность точки и линии поверхности вращения
  • Пересечение поверхности и плоскости
  •   Пересечение поверхностей
  • Способ концентрических сфер
  • Пересечение поверхностей второго порядка
  • Развертки гранных поверхностей
  • Приближенные развертки
    развертывающихся поверхностей
  • Условные развертки неразвертывающихся
    поверхностей
  • Аксонометрические проекции
  • Ортогональная (прямоугольная) диметрическая проекция
  • МЕТОДЫ ПРОЕЦИРОВАНИЯ
  • Проецирование точки на две и три плоскости проекций
  • Задание прямой в пространстве
  • Длина отрезка прямой и углы наклона прямой
    к плоскостям проекции
  • Задание плоскости
  • Признаки принадлежности точки и прямой плоскости
  • ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
  • ПРЯМАЯ ЛИНИЯ,
    ПЕРПЕНДИКУЛЯРНАЯ К ПЛОСКОСТИ
  • Замена плоскостей проекций
  • Метод плоскопараллельного перемещения
  • Решение методом вращения вокруг проецирующей оси
  • Сечение многогранников плоскостью
  • Поверхность вращения общего вида
  • ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ
  • Плоскость, касательная к поверхности
  • Примеры задачь
  • Определить натуральную длину отрезка АВ
  • Построить проекции линии пересечения двух плоскостей
  • Построение эпюра параллельных плоскостей
  • Построить линию пересечения двух плоскостей
  • Построить горизонтальную проекцию плоской линии,
  • Построить на развертке цилиндра линию,
    принадлежащую поверхности цилиндра 
  •   Построить пересечение двух поверхностей вращения
  • КОМПАС-3D
  • ПОВЕРХНОСТИ

    Понятие поверхности.

    В начертательной геометрии поверхности рассматриваются как множество последовательных положений некоторой линии, перемещающейся в пространстве по определенному закону. Такой способ образования поверхности называется кинематическим.

    Линия (кривая или прямая) движется в пространстве по определенному закону и создает поверхность. Она называется образующей. В процессе образования поверхности она может оставаться неизменной или менять свою форму. Закон перемещения образующей задается в виде совокупности линий и указаний о характере перемещения образующей. Эти линии называются направляющими.

    Кроме кинематического способа, поверхность может быть задана

    аналитически, т. е. описана математическим выражением;

    каркасным способом, который используется при задании сложных поверхностей; каркас поверхности представляет собой упорядоченное множество точек или линий, принадлежащих поверхности.

    Чтобы задать поверхность на комплексном чертеже, достаточно иметь на нем такие элементы поверхности, которые позволяют построить каждую ее точку. Совокупность этих элементов называется определителем поверхности.

    Определитель поверхности состоит из двух частей:

    геометрической части, включающей постоянные геометрические элементы (точки, линии), которые участвуют в образовании поверхности;

    алгоритмической части, задающей закон движения образующей, характер изменения ее формы.

    В символическом виде определитель поверхности F можно записать в виде: F(Г)[A], где Г – геометрическая часть определителя, А – алгоритмическая.

     Чтобы у поверхности выделить определитель, следует исходить из кинематического способа ее образования. Но так как многие одинаковые поверхности могут быть получены различными путями, то они будут иметь различные определители. Ниже будут рассмотрены наиболее распространенные поверхности в соответствии с классификационными признаками, приятыми в курсе начертательной геометрии.

    Контур и очерк поверхности

    Чтобы задать поверхность на комплексном чертеже достаточно указать проекции не всего множества точек и линий, принадлежащих поверхности, а только геометрические фигуры, входящие в состав ее определителя. Такой способ задания поверхности позволяет построить проекции любой ее точки. Задание поверхности проекциями ее определителя не обеспечивает наглядность, что затрудняет чтение чертежа. Для повышения наглядности, если это возможно, на чертеже указывают очерковые линии (очерки) поверхности.

    Когда какая-нибудь поверхность W проецируется параллельно на плоскость проекций S, то проецирующие прямые, касающиеся поверхности W, образуют цилиндрическую поверхность (рис. 11.1). Эти проецирующиеся прямые касаются поверхности W в точках, образующих некоторую линию m, которая называется контурной линией.

    Проекция контурной линии m на плоскость S - m/, называется очерком поверхности. Очерк поверхности отделяет проекцию поверхности от остальной части плоскости проекций.

    Контурную линию поверхности используют при определении видимости точек относительно плоскости проекций. Так, на рис. 11.1 проекции точек поверхности W, расположенные левее контура m, на плоскости S будут видимыми. Проекции остальных точек поверхности будут невидимыми.

    Точка и линия на поверхности

    Точка принадлежит поверхности, если она принадлежит какой-нибудь линии, принадлежащей поверхности.

    Линия принадлежит поверхности, если все ее точки принадлежат поверхности.

    Следовательно, если точка принадлежит поверхности, то ее проекции принадлежат одноименным проекциям некоторой линии этой поверхности.

    Для построения точек, лежащих на поверхностях, пользуются графически простыми линиями (прямыми или окружностями) этой поверхности. В некоторых случаях применяют кривые, которые проецируются в графически простые линии.

    Примеры построения недостающих проекций точек и линий, принадлежащих поверхностям, рассмотрены ниже для каждой классификационной группы поверхностей.

    Поверхности

    Из множества различных поверхностей выделяется несколько классов в зависимости от формы образующей, а также от формы, числа и расположения направляющих:

    Поверхности закономерные и незакономерные.

    Линейчатые (образованные перемещением прямой линии) и нелинейчатые (криволинейные) поверхности.

    Поверхности развертывающиеся (или торсы) и неразвертывающиеся.

    Поверхности с образующей постоянной формы и поверхности с образующей переменной формы.

    Поверхности с поступательным, вращательным или винтовым движением образующей.

    В настоящем пособии рассмотрены линейчатые поверхности, гранные, поверхности вращения, циклические и винтовые.

    СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ