Начертательная геометрия типовые задачи и методика решений

Начертательная геометрия
  • Ортогональное  (прямоугольное) проецирование
  • Комплексный чертеж
  • Комплексный чертеж прямой
  • Взаимное положение точек и прямых,
    их принадлежность плоскости
  • Принадлежность точки и прямой плоскости
  • Определение расстояния между двумя точками
  • Нахождение натуральной величины плоской фигуры
  • Построение точки пересечения прямой с плоскостью
  • Взаимное положение плоскостей
  • Метрические задачи
  • Перпендикулярность прямой и плоскости
  • Касательная плоскость и нормаль к поверхности
  • Определение расстояний
  • Определение расстояния
    между скрещивающимися прямыми
  • Угол между прямой и плоскостью
  • Угол между плоскостями
  • Кривая линия
  • Понятие поверхности.
  • Линейчатая поверхность
  •  Гранные поверхности и многогранники
  • Принадлежность точки и линии поверхности вращения
  • Пересечение поверхности и плоскости
  •   Пересечение поверхностей
  • Способ концентрических сфер
  • Пересечение поверхностей второго порядка
  • Развертки гранных поверхностей
  • Приближенные развертки
    развертывающихся поверхностей
  • Условные развертки неразвертывающихся
    поверхностей
  • Аксонометрические проекции
  • Ортогональная (прямоугольная) диметрическая проекция
  • МЕТОДЫ ПРОЕЦИРОВАНИЯ
  • Проецирование точки на две и три плоскости проекций
  • Задание прямой в пространстве
  • Длина отрезка прямой и углы наклона прямой
    к плоскостям проекции
  • Задание плоскости
  • Признаки принадлежности точки и прямой плоскости
  • ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
  • ПРЯМАЯ ЛИНИЯ,
    ПЕРПЕНДИКУЛЯРНАЯ К ПЛОСКОСТИ
  • Замена плоскостей проекций
  • Метод плоскопараллельного перемещения
  • Решение методом вращения вокруг проецирующей оси
  • Сечение многогранников плоскостью
  • Поверхность вращения общего вида
  • ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ
  • Плоскость, касательная к поверхности
  • Примеры задачь
  • Определить натуральную длину отрезка АВ
  • Построить проекции линии пересечения двух плоскостей
  • Построение эпюра параллельных плоскостей
  • Построить линию пересечения двух плоскостей
  • Построить горизонтальную проекцию плоской линии,
  • Построить на развертке цилиндра линию,
    принадлежащую поверхности цилиндра 
  •   Построить пересечение двух поверхностей вращения
  • КОМПАС-3D
  • Определение расстояния между двумя точками

    Расстоянием между двумя точками называется длина отрезка, соединяющего эти точки. Для определения расстояния между двумя точками А и В необходимо соединить их отрезком АВ (рис. 4.4), затем узнать длину этого отрезка. Отрезок общего положения не параллелен ни одной из плоскостей проекций. Длины проекций А1В1 и А2В2 меньше длины отрезка АВ. Для того чтобы узнать длину отрезка АВ, необходимо спроецировать его в натуральную величину и измерить эту проекцию, так как она равна отрезку АВ. 

    Введем новую плоскость проекций П4 параллельно отрезку АВ и перпендикулярно П1. При этом новая ось x14 будет параллельна А1В1 (в противном случае прямая АВ и плоскость П4 пересекутся). Угол наклона отрезка АВ к плоскости П4 равен нулю и АВ на П4 проецируется в натуральную величину, т.е. А4В4 = АВ. Измерив отрезок А4В4, получим длину отрезка АВ.

    Каждая из точек А4 и В4 строилась с использованием правила замены плоскостей проекций. Расстояние между А1В1 и x14 не влияет на величину А4В4 и поэтому может быть взято произвольно. В результате введения П4 выполнен переход от системы (П1П2) к системе (П1П4), в которой прямая АВ, проходящая через отрезок АВ, является линией уровня.

    На плоскости П4 (рис. 4.4) кроме А4В4 = АВ получили угол a, который равен углу между АВ и плоскостью П1, так как плоскость этого угла параллельна плоскости П4. Если ввести новую плоскость П5 параллельно АВ и перпендикулярно П2, то новая ось x25 будет параллельна А2В2. Получим А5В5 = АВ и угол b, который равен углу между АВ и плоскостью П2, так как плоскость этого угла параллельна плоскости П5.

     

     

     

    Проецирование прямой общего положения в точку на новую плоскость проекций

    Придание фигурам частного положения относительно плоскостей проекций значительно облегчает решение многих задач. Для того, чтобы прямая общего положения в новой системе плоскостей проекций стала проецирующей прямой, необходимо, чтобы новая плоскость проекций была перпендикулярна прямой. Прямая на эту плоскость спроецируется в точку. Плоскость, перпендикулярная прямой общего положения, является плоскостью общего положения. Введение такой плоскости в качестве новой плоскости проекций невозможно, так как новая плоскость проекций должна быть перпендикулярна одной из старых плоскостей проекций. Таким образом, решить задачу проецирования прямой общего положения в точку, одной заменой плоскости проекций нельзя. Поэтому попытаемся решить эту задачу сначала для прямой частного положения, а именно для прямой уровня.


    Пусть h(h1, h2) – горизонталь (рис. 4.5). Введем новую плоскость проекций П4 перпендикулярно h. Поскольку h параллельна П1, то П4 будет перпендикулярна П1. Плоскость П4 может быть взята в качестве новой плоскости проекций и на нее h спроецируется в точку. Новая ось x14 перпендикулярна проекции h1, так как h1 параллельна h и, значит, перпендикулярна П4 и x14. Для построения новой проекции горизонтали, построим новые проекции двух ее точек 1 и 2. Новые проекции этих точек, построенные по правилу замены плоскостей проекций, совпадают. Так как точки 1 и 2 взяты произвольно, то проекции остальных точек горизонтали тоже совпадут, т.е. горизонталь проецируется на П4 в точку.

    Используя решение задачи проецирования линии уровня в точку, можно выполнить проецирование прямой общего положения m в точку (рис. 4.6). Введем новую плоскость проекций П4 параллельно прямой m и перпендикулярно П1. Новая ось x14 параллельна горизонтальной проекции m1. По новым проекциям двух произвольных точек 1 и 2 прямой m, находим m4. В новой системе плоскостей (П1П4) прямая m является линией уровня, она параллельна П4 (при этом m1 параллельна x14). Теперь, используя решение предыдущей задачи (рис. 4.5), проецируем прямую m в точку. Для этого вводим новую плоскость проекций П5 перпендикулярно прямой m и перпендикулярно П4. Прямая m на П5 проецируется в точку. В новой системе плоскостей проекций (П4П5) прямая m является проецирующей прямой. 

    СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ