Начертательная геометрия типовые задачи и методика решений

Начертательная геометрия
  • Ортогональное  (прямоугольное) проецирование
  • Комплексный чертеж
  • Комплексный чертеж прямой
  • Взаимное положение точек и прямых,
    их принадлежность плоскости
  • Принадлежность точки и прямой плоскости
  • Определение расстояния между двумя точками
  • Нахождение натуральной величины плоской фигуры
  • Построение точки пересечения прямой с плоскостью
  • Взаимное положение плоскостей
  • Метрические задачи
  • Перпендикулярность прямой и плоскости
  • Касательная плоскость и нормаль к поверхности
  • Определение расстояний
  • Определение расстояния
    между скрещивающимися прямыми
  • Угол между прямой и плоскостью
  • Угол между плоскостями
  • Кривая линия
  • Понятие поверхности.
  • Линейчатая поверхность
  •  Гранные поверхности и многогранники
  • Принадлежность точки и линии поверхности вращения
  • Пересечение поверхности и плоскости
  •   Пересечение поверхностей
  • Способ концентрических сфер
  • Пересечение поверхностей второго порядка
  • Развертки гранных поверхностей
  • Приближенные развертки
    развертывающихся поверхностей
  • Условные развертки неразвертывающихся
    поверхностей
  • Аксонометрические проекции
  • Ортогональная (прямоугольная) диметрическая проекция
  • МЕТОДЫ ПРОЕЦИРОВАНИЯ
  • Проецирование точки на две и три плоскости проекций
  • Задание прямой в пространстве
  • Длина отрезка прямой и углы наклона прямой
    к плоскостям проекции
  • Задание плоскости
  • Признаки принадлежности точки и прямой плоскости
  • ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
  • ПРЯМАЯ ЛИНИЯ,
    ПЕРПЕНДИКУЛЯРНАЯ К ПЛОСКОСТИ
  • Замена плоскостей проекций
  • Метод плоскопараллельного перемещения
  • Решение методом вращения вокруг проецирующей оси
  • Сечение многогранников плоскостью
  • Поверхность вращения общего вида
  • ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ
  • Плоскость, касательная к поверхности
  • Примеры задачь
  • Определить натуральную длину отрезка АВ
  • Построить проекции линии пересечения двух плоскостей
  • Построение эпюра параллельных плоскостей
  • Построить линию пересечения двух плоскостей
  • Построить горизонтальную проекцию плоской линии,
  • Построить на развертке цилиндра линию,
    принадлежащую поверхности цилиндра 
  •   Построить пересечение двух поверхностей вращения
  • КОМПАС-3D
  • Взаимное положение точек и прямых, их принадлежность плоскости

    Взаимное положение точки и прямой. Деление отрезка прямой в данном отношении

    Точка может принадлежать прямой и может не принадлежать прямой. Пусть точка A принадлежит прямой e (A Î e). При проецировании прямой и точки на плоскость П1 получим, что горизонтальная проекция точки принадлежит горизонтальной проекции прямой A1 Î e1. Аналогично и при проецировании на П2 – A2 Î e2. Таким образом, если точка принадлежит прямой, то ее проекции принадлежат одноименным проекциям прямой. Справедливо и обратное утверждение – если проекции точки принадлежат одноименным проекциям прямой, то точка принадлежит прямой. На рис. 3.1 точка A принадлежит прямой e, а остальные точки не принадлежат прямой e.

    Для определения принадлежности точки профильной прямой, необходимы профильные проекции точки и прямой.

    При проецировании отрезка AB на П1 получим отрезок A1B1, при проецировании на П2 – A2B2. На рис. 3.2 показан комплексный чертеж отрезка AB.

    Поскольку отношение длин отрезков, лежащих на одной прямой при проецировании не меняется, то для деления отрезка в данном отношении, достаточно разделить в этом отношении одну проекцию отрезка и это полностью определит точку деления. На рис. 3.2 показано построение точки C, делящей отрезок AB в отношении ïACï : ïCBï = 3 : 2. На основе теоремы Фалеса, в отношении 3 : 2 делим горизонтальную проекцию отрезка, т.е. ïA1C1ï : ïC1 B1ï = 3 : 2. Так находим точку C1. Затем по линии проекционной связи находим C2 . Точка C2 делит фронтальную проекцию отрезка в том же отношении ïA2C2ï : ïC2 B2ï = 3 : 2 (по теореме Фалеса, так как линии проекционной связи всех точек параллельны). На рис. 3.2 последовательность построений показана стрелкой на линии проекционной связи – сначала строится C1, а затем C2. 

    Взаимное положение прямых

    В пространстве две прямые могут совпадать, пересекаться, быть параллельны, скрещиваться.


    У совпавших прямых все точки совпадают, поэтому эти прямые будут иметь совпавшие одноименные проекции. По сути, это одна прямая, обозначенная по-разному.

    Пересекающиеся прямые имеют одну общую точку. Пусть прямые общего положения a и b пересекаются в точке K (a Ç b = K). Пересекающиеся прямые, в общем случае, проецируются в пересекающиеся прямые. Точка K – реально существующая точка и ее проекции находятся на линии проекционной связи (K1K2), перпендикулярной оси x (рис. 3.3).

    Параллельные прямые расположены в одной плоскости и не имеют общих точек. Параллельные прямые, в общем случае, проецируются в параллельные прямые (пятое свойство ортогонального проецирования). На рис. 3.4 показан комплексный чертеж параллельных прямых e и m. При проецировании этих прямых на П1 получим e1 // m1, при проецировании на П2 – e2 // m2.

    Прямые, не лежащие в одной плоскости, называются скрещивающимися. Эти прямые не параллельны и не пересекаются. Пример комплексного чертежа скрещивающихся прямых n и b показан на рис. 3.5 (n ×/ b). Горизонтальные и фронтальные проекции этих прямых пересекаются. Но точки их пересечения не лежат на одной линии проекционной связи. В точке пересечения горизонтальных проекций совпали проекции двух точек 1 Î n и 2 Î b. Это горизонтально конкурирующие точки. Координаты x и y этих точек равны, а координата z точки 1 больше, чем z точки 2. В точке пересечения фронтальных проекций этих прямых совпали проекции двух точек 3 Î n и 4 Î b. Это фронтально конкурирующие точки. Координаты x и z этих точек равны, а координата y точки 4 больше, чем y точки 3. Скрещивающиеся прямые могут проецироваться на одну плоскость проекций в параллельные прямые, а на другую плоскость проекций - в пересекающиеся прямые.

    Если хотя бы одна из прямых является профильной прямой, то для определения взаимного положения прямых нужно построить профильные проекции этих прямых.

    При рассмотрении комплексных чертежей любых фигур необходимо мысленно представлять эти фигуры в пространстве и их положение относительно плоскостей проекций.

    СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ