Физика примеры решения задач

Физика
  • Основные типы связей в твердых телах
  • Внутренняя структура твердых тел
  • Обратная решетка
  • Дифракция в кристаллах
  • Упругие свойства кристаллов
  • Динамика решетки
  • Тепловые свойства твердых тел
  • Электроны в металлах.
  • Зонная теория твердых тел
  • Дефекты кристаллической решетки
  • Раздел «Кинематика»
  • Раздел «Динамика»
  • Механические колебания и волны. Акустика
  • Уравнение движения материальной точки
  • Молекулярная физика и термодинамика.
  • Раздел. «Электростатика»
  • Раздел «Постоянный ток»
  • Раздел «Переменный ток»
  • Электрическое поле
  • Элементы атомной и ядерной физики
  • Взаимодействие света с веществом.
  • Основные физические константы в СИ
  • ОБРАТНАЯ РЕШЕТКА

     Обратная решетка представляет собой удобную абстракцию, позволяющую математически просто и точно описывать условия, в которых протекает то или иное явление в твердом кристаллическом теле. Каждой кристаллической структуре соответствуют две решетки: кристаллическая решетка и обратная решетка. Они связаны между собой соотношениями:

      . (2.7)

    - векторы обратной решетки; - векторы прямой решетки. Векторы кристаллической решетки имеют размерность длины, а размерность векторов обратной решетки [длина]-1.

     Так как , то скалярное произведение:

     , (2.8)

      . (2.9)

    При построении обратной решетки векторы  перепендикулярны соответственно , ,  и, обратно, векторы  перпендикулярны парам векторов , , . Векторы прямой решетки связаны с векторами обратной решетки аналогичными формулами:

     ;  ; (2.10)

    где   - объем элементарной ячейки обратной решетки: .

    Свойства обратной решетки:

    обратная и прямая решетки взаимно сопряжены.

    решетка обратная обратной, есть исходная прямая решетка.

    каждый узел [[mnp]]* обратной решетки соответствует семейству параллельных плоскостей (hkl)прямой решетки.

    обратная решетка Бравэ сама является решеткой Бравэ.

    Векторы трансляции связывают в прямой кристаллической решетке пары точек, которые имеют одинаковые атомные окружения. В обратном пространстве также вводится понятие трансляций, которые описываются векторами обратной решетки, образующих следующее семейство:

     , (2.11)

    где h, k и l – целые числа.

    Если прямая решетка строго периодична, то обратная решетка, т.е. множество точек, удовлетворяющих условию (2.11), также периодична и бесконечна. Однако для решения тех задач, где удобно пользоваться представлением об обратной решетки, достаточно бывает ограничиться конечными объемом обратного пространства. Зона Бриллюэна представляет собой ячейку Вигнера-Зейтца в обратной решетке. При построении ячейки Вигнера-Зейтца произвольно выбранный узел обратной решетки соединяют прямыми линиями с ближайшими эквивалентными узлами; затем проводят плоскости, перпендикулярные этим прямым и проходящие через их середину. В результате получают замкнутую область пространства с центром в выбранном узле, все точки которой лежат ближе у нему, чем к любому другому узлу решетки (рис.4). Первая зона Бриллюэна является зоной с наименьшим объемом. Она полностью ограничена плоскостями, которые делят пополам перпендикулярные к ним векторы обратной решетки, проведенные из начала координат.

    Рис. 4. Ячейка Вигнера-Зейтца: а - двухмерный случай; б - для объемно-центрированной кубической решетки; в – для гранецентрированной кубической решетки.

    Физика - лекции, конспекты, примеры решения задач